
Interfaces for Programmers
Seminar on Post Desktop User Interfaces

Philipp Siebenkotten Tobias Lietke

RWTH Aachen University, Germany
{philipp.siebenkotten, tobias.lietke}@rwth-aachen.de

ABSTRACT
Common interfaces for programmers (integrated develop-
ment environments, IDEs) provide a flat file structure and
basic text editing facilities. Yet, programmers tend not to ex-
clusively think in these structures, so in this paper we high-
light different approaches to ease the activity of program-
ming. Supporting the developers in creating a mental model
of their work is the key factor we considered. We identi-
fied the key areas of navigation, learning and social aspects.
While flat structures — more appropriate for compilers —
are prevalent in established IDEs, we found semantic rela-
tions of elements in these areas to better supplement the de-
velopers in the gist of their programming activity.

INTRODUCTION
This paper intends to summarize recent publications on pro-
grammer interfaces development, so we will start out by
summarizing facts about modern application development
and how programmers approach it. This provides an appro-
priate structure to arrange and classify the different papers.

Smith [8] describes staff distributions over different project
phases for projects of several sizes (12, 27 and 115 person
months). According to these numbers, about 70% of the total
effort is spent doing the concrete implementation. An inter-
face for programmers should therefore especially support the
developers during implementation, in order to have the best
possible impact on their overall performance. Furthermore
the numbers suggest the team size nearly triples from the ini-
tial inception phase to the main construction phase, where
the features are implemented. If an architecture is designed
in an early phase, this results in a need for efficient com-
munication or other means of knowledge transfer. Even in
a more agile approach, with fast iterations over such phases,
one could argue that the same basic setting is present: A few
developers design the overall system, whereas a larger num-
ber is involved with the actual implementation. This makes
knowledge transfer an important aspect, which a good inter-
face should support. Especially when new developers enter
a team, eg. for bug fixing, the knowledge previous built up,
could be harnessed in order to support them.

Another factor to consider is the way in which developers
work with the source code. Mayrhauser and Vans have sum-
marized research on software comprehension models [6].
Their important conclusion is that developers (especially ex-

Figure 1. Code Thumbnails — Visual Studio extended by the thumb-
nail (left) and showing navigation aids during mouse-over (right). [3]

perts) tend to build a mental, structured model and when
working on the code, they frequently transfer between an
abstract and a detailed view on the project. We will present
research which implements alternatives to classical develop-
ment environments, which might enhance the programmer’s
ability to think in such structures.

NAVIGATION
Software developers spend 35% of their time navigating the
source-code [5]. This is not only the case in projects with a
big amount of code, but already when project is of moderate
size. Thus inefficient navigation causes task to take too much
time and even experienced programmers spend a lot of time
navigating when working on a small code base. There are
several reasons for this navigation-problem. First the nav-
igation in common IDEs is based on memorizing symbol
names [3]. For every navigation step one needs to know the
name of a package, file, class or method. So the developer
has to remember many names and this can overburden him
even in small projects.

Code Thumbnails
One idea to avoid this navigational problem is proposed by
Robert DeLine and colleagues from Microsoft Research [3].
They introduce the tool Code Thumbnails, an add-on for the
Microsoft Visual Studio IDE. This add-on tries to use the
spatial memory for navigation instead of relying on a cog-
nitive task. To achieve this, Code Thumbnails extends Mi-

1



Figure 2. Code Thumbnails Desktop — Showing all project files in an
overview [3]

crosoft Visual Studio with two new features in order to re-
duce navigation time. The underlying approach is to use the
text shape to make navigation a perceptual task and as a re-
sult forming a spatial memory map:

Code Thumbnails Scrollbar
The first feature is the Code Thumbnails Scrollbar (CT Scroll-
bar or CTS) (figure 1), which is used for intra-file navigation.
It extends the common scrollbar with a new window besides
the scrollbar, which visualizes the code the user can scroll
through. The window shows a small overview of the text
in the scrollable file with a font size of a maximum of 2.5
points, so that it is not possible to read it, with the goal that
not the text itself is perceived, but the structure as a shape.
Then the programmer can use the CTS as something like a
map of the file. For orientation the current shown code is
marked in the CTS-window with a box around it. To high-
light the code hierarchy the second- and third-level nodes are
marked with brackets. So there is a visual feedback of the
whole file when scrolling through. To speed up the scrolling
time the user can also switch directly to the part of the file
he wants to see, by just clicking on the corresponding part
in the CTS. While the mouse is inside the CTS, the view
of the CTS is augmented with labels naming of the second-
and third-level navigation targets. Therefore the user has an
overview of the file hierarchy and can jump directly to the
desired code fragment.

Code Thumbnails Desktop
The second feature is the Code Thumbnails Desktop (CT
Desktop or CTD, figure 2). It provides an overview of every
source file in the current project, so the developer can use it
for inter-file navigation. Therefore the CTD shows a thumb-
nail image as in CTS but of every file in the project, arranged
as an workspace filling desktop. To highlight the currently
used code, every part of the code visible in an editor win-
dow is highlighted by a blue background. The text of every
thumbnail has the same font size, so the user is able to differ

the length of a file by the height of the thumbnail. Every
closed file is shaded gray. The currently active file is marked
by a thicker border then the other thumbnails. To navigate
with the CTD the user can do several things: By moving the
mouse cursor over the representation of a file, the labels of
the code hierarchy are shown as in CTS. If the user clicks
on the title area of a thumbnail, this file becomes active. To
jump directly to a desired part of one file, the developer can
also click directly on the corresponding part in the thumb-
nail. A closed document can be opened and activated by
double-clicking the grayed thumbnail.

To improve search in the code, the search results of any stan-
dard search tool in Microsoft Visual Studio are highlighted
in the CTS and the CTD.

Evaluation
The Microsoft Research team evaluated Code Thumbnails
formative in a user study with eleven participants. They get
75 minutes time to solve three programming task in a C#
project of an Tetris game. Afterwards they performed a quiz
about the spatial memory. Therefore they first had to click on
a blank screen in CTD size to localize methods and classes
of the Tetris project. Then in a similar second task all thumb-
nails gets revealed without file names. To test the CTS the
participants first has to localize methods names in a blank
screen in CTS size and then in same screen, but with re-
vealed code thumbnails without any text labels. Because of
a technical problem only five participants got evaluated. The
participants used Code Thumbnails in 40% to 91% of there
navigation activities and they gave a positive feedback about
the tool. The spatial memory quiz was solved significantly
faster in the second and fourth task. This fact means that
the participants were beginning to create a map of the code
structure so that the approach of spatial memory seems to
work.

Code Bubbles
While Code Thumbnails tries to uses the spatial memory
instead of the cognitive memory, but leave the IDE’s basic
functionality as before, Bragdon et al [1, 2] go one step fur-
ther and try to rethink the whole structure of the IDE. Instead
of the common file-based window-design as used in every
common IDE they introduce the bubbles metaphor as a new
design concept (figure 3). The reason for this new design
approach is that file-based views have many disadvantages.
First, files show parts of the source code depending on the
necessity and not based on the semantics of the source code.
And every window in a file-based view is large. There are
many buttons, bars and other items around every window
and therefore much display-space is wasted by white colour
background without information, because source code does
not fit in a rectangle in a smart way. And of cause a window
is also limited by the screen size of the monitor.

So Code Bubbles is introduced as a new design choice. A
prototype of this IDE has been implemented as an alternate
GUI for the Eclipse IDE, which uses bubbles instead of win-
dows and methods instead of the whole file as foundation.

2



Figure 3. Code Bubbles — a single code bubble [2]

The bubble-metaphor
A bubble represents one method in the code, so there will
be many bubbles on the screen, therefore one goal of the
bubble-design was, that it should be easy to handle. For a
tiny design every bubble has a maximum size of 55 charac-
ters by 40 lines. If the code does not fit to this restriction
three steps are done: First the bubble gets minimized with a
syntax aware algorithm. Then basic code blocks like while-
blocks or if-blocks get elided. The user can then expand the
code block manually when needed. If the code still does not
fit, as a final minimizing measure, a scrollbar is displayed.

Another approach to realize a tiny design is the minimization
of decorations. There is only a thin border to resize a bubble.
No title bar is displayed, instead there is only a breadcrumb
bar, which the developer can use to scroll trough the class
file to search for a method. More buttons or bars are not
implemented (figure 3). Manipulating the bubbles is real-
ized by mouse actions: The developer can move a bubble
by right click and drag, a middle click closes a bubble, with
a left click he can manipulate the text caret and the right
click without drag opens a context menu, which displays ad-
ditional options. To recover from unintentional clicks, an
undo-button is displayed on the screen, whenever a bubble
is closed.

Multiple bubbles
As mentioned before, of course there are multiple bubbles
in one working set, which is displayed on the screen. So
some default design choices were made to make different
views look similar and to make the view easy to handle. The
first thing is the avoidance of overlapping. Bubbles are non-
overlapping. If the user tries to place a bubble in that way,
that it overlaps other bubbles, a spacer algorithm pushes the
other bubbles away, optimized to avoid too much movement,
which would cause spatial adjacency (which would not be
good, as seen in CT).

When the user opens a new bubble, the spacer algorithm
pushes the other bubbles away and the new bubble is initially

highlighted orange and then faded to the normal background
colour. This supports the user in focusing on the new bubble.

Arrows are drawn to see function calls and their correspond-
ing method bubbles (figure 4.H). Whenever the user moves
the mouse cursor over a bubble, the bubbles connections are
highlighted.

To make operations on several bubbles easier, bubbles are
grouped into bubble groups. Whenever two bubbles are close
to each other, they are joined into one group. To show the
group membership of a bubble, each bubble has a semi-
transparently coloured background shadow around it and each
group is drawn in a unique colour. It is possible to name a
group and many operations can be performed on a group in
one step. (figure 4.E)

Virtual screen space
To make many bubbles in one workspace possible, the tool
provides a virtual screen, which is very large though not in-
finite. It is 1.5 times the height and 20 times the width of the
actual display. For a better overview of the virtual screen, a
zoom function is implemented. If the user presses F9, the
view switches between a 50% reduced view and the default
view.

Another feature for overview is the workspace bar (figure
4.A). It gives the user an overview of the working sets. The
currently used workspace is marked (figure 4.B). Different
working sets can be labeled for an easy use. This gives the
user the possibility to switch quickly between several tasks
and therefore supports interruptions in the workflow.

Working with the IDE
To search for a bubble the developer can use a pop-up search
box (figure 4.I), which is opened by right clicking on the
background. This search box has a list of all packages and
classes in the project (figure 4.J) and users can search for
methods. If the user hovers over the method name, a pre-
view of the bubble is shown (figure 4.K). Pressing Enter or
clicking then creates a corresponding bubble.

Because a developer does not only read and write code, some
special bubbles are implemented in the IDE. Note bubbles
(figure 4.D) give the user the possibility to add his notes di-
rectly to the workspace. Web bubbles gives the user the ac-
cess to a web browser in a bubble, Javadoc bubbles (figure
4.C) enable him to look for something in the documentation.
Flag bubbles (figure 4.F) can be used to mark bubbles with
an icon and an optional label. This might be useful to high-
light bugs, todo items or anything else. Bug bubbles(figure
4.G) show the user bugs from a database.

Debugging with bubbles
One important feature of the IDE is the bubble based debug-
ging support. The bubbles are useful for debugging, because
they are well qualified to show the program context over time
and not only at a single point. So whenever the program
stops, a new debugging area is displayed and a code bubble
with the corresponding code is opened together with a call

3



Figure 4. Code Bubbles — IDE User Interface [2]

stack bubble. The user can now work in this working set to
edit the code. For exceptions a Javadoc bubble detailing the
thrown exception is displayed.

A debugged instance is stored in a so called channel. It is
possible to save a session and reload it. To compare the cur-
rent channel with other channels, a channel can be displayed
below the current channel.

Evaluation
Bragdon et. al evaluated Code Bubbles quantitatively and
qualitatively.

For the quantitative analysis they compare Code Bubbles
with the common IDE Eclipse to find out how many func-
tions one can see simultaneously and how many UI oper-
ations one must use to create concurrently visible working
sets for both IDEs. Therefore they looked at three open
source Java applications and compared the results for the
worst case, the random case and the typical case. In ev-
ery case Code Bubbles was able to show more functions si-
multaneously. The average increase was between 28.55%
and 83.33%. In the random and typical case Code Bub-
bles reduces the UI operations by an average of 54.64% and
47.07%. Only in the worst case Eclipse performed better in
3 of 6 trails.

In a qualitative evaluation 23 professional developers got six
tasks to solve for an unknown Java project with 2658 lines of

code in the Code Bubbles IDE to solve in about 1.5 hours.
In the tasks the participants had to compare methods, un-
derstand code and code hierarchy, get interrupted to work
on other working sets and later resume the interrupted part.
Also, debugging tasks were part of the evaluation. The re-
sults were very positive. The tool gets a rating of 4.33± 0.26
on a 5-point Likert scale (5.0 = ”very convenient”). The de-
velopers liked, that the IDE is working set-based and that
they could use the large virtual screen space, also the De-
bugging features were rated very high. To edit code the de-
velopers state, they could use Code Bubbles for most tasks,
but there might be tasks, in which they want to use the file
structure and bring the class to the front. Nevertheless Code
Bubbles seems to be a very promising project we would like
to hear more about in the future.

LEARNING
Relo
Relo [7] is a tool developed by Sinhal et al, which helps the
developer to get an overview of a project. With Relo the
developer can explore the static structure of the code in a
visualization similar to UML diagrams. This is very helpful,
if a developer gets the task to edit the code of a project, for
example to add new features, even if the developer never
worked with this project before. Then Relo gives him the
possibility to easily get a good visualization of the needed
parts in code. Therefore the tool gives an overview of the
code part the user chooses by showing an inheritance tree as
well as an call-hierarchy tree in one view.

4



Figure 5. Relo — a starting class in Relo (left) and a class with an
added method (right) [7]

Figure 6. Relo — showing class inheritance (left) and a view with open
methods, code editing is supported (right) [7]

To achieve this the developer has to choose a relevant class
as a starting point and add it to the view (figure 5). From this
first class he can traverse the inheritance tree and add other
classes to the view (figure 6). In every class, it is possible
to show the methods of this class and if he finds a relevant
method, he can mark it, so it stays in the view. It is also
possible to edit the method directly in the diagram (figure
6). Then for important methods the developer can expand
them, which then shows the call-hierarchy to this method
(figure 7).

Relo is implemented as an Eclipse plugin. So a user can
work in his projects with Eclipse as usual, but also has the
possibility to switch to the Relo view, which is automati-
cally updated, when the developer works with the code in-
side other Eclipse views.

To operate with Relo there are so called navigation aids.
These are context-sensitive buttons, which are shown beside
the currently selected element of code. There are only navi-

Figure 7. Relo — a view with call-relationships and inheritance rela-
tionships [7]

gation aids for the most common relationships.

It is possible to add annotations to the view. Relationships
between items can be labelled, it is possible to group items,
and comment writing is supported as well. Relo supports
some automatic services, but gives the developer the possi-
bility to control the view by himself. For example Relo auto-
matically draws relationships between items in the view, or
the containing class is drawn, if there are multiple items with
the same parent. Also an autobrowse feature is available. If
multiple artifacts are selected, autobrowse searches for user
items which are related to at least two of the selected arti-
facts and add them to the view. But if the developer chooses
to do so, he can edit the view by himself and therefore is
always able to remove items by clicking the corresponding
navigation aids.

As Relo does not want to overwhelm the developer, the de-
fault is to show as little information as possible. For example
a class or a method initially only shows its name, but can be
expanded by clicking the corresponding navigation aid.

In every expansion level a maximum of ten new elements
should be shown. To manage this problem, Relo automat-
ically groups the new elements, for example based on ac-
cess or name. Also there are some default view constraints.
Method calls are drawn horizontally, inheritance edges ver-
tically and other layout choices are realized in a way the de-
veloper would expect them.

Relo has been evaluated by nine developers with an average
of 6.75 years experience with Java. They get a short intro-
duction in Relo and then had to solve three programming
tasks in a project of over 150.000 lines of code. First there
was a warm-up task during which the participants get help
with Relo. Then they have to fix a bug in the code, and the
last task was a feature addition. The developers used Relo
in an average of 55% of their task time. Most participants
didn’t feel overwhelmed by Relo, considered the tool use-
ful and would like to use it for their own projects. But they
also mentioned some disadvantages of Relo, for example the
missing integrated search function and some bugs in the tool.

Nevertheless Relo seems to be a good approach to give the
developer the possibility to visualize projects with a large
code base, to learn about the semantic structure of the source
code.

ParseWeb
Thummalapenta and Xie have worked with another approach
and developed a tool called ParseWeb [9]. ParseWeb gives
the developer a nice possibility to reuse existing libraries and
frameworks, which are available on the web. So the devel-
oper doesn’t have to write code again, which has already
been written before. ParseWeb can solve problems where a
source object has to be transformed to a destination object.
It shows the user often used method-invocation sequences
(MIS). ParseWeb is implemented as an Eclipse plugin and
supports searching for code written in the Java language.

5



The approach is splitted into five components. There is the
code search engine, the code downloader, the code analyzer,
the sequence postprocessor and the query splitter. Google
Code Search is used as code search engine, but it would
not be difficult to implement an alternative search engine in-
stead. The code downloader submits the queries from the de-
veloper, which has to be in the form Source→ Destination,
to the code search engine and downloads the corresponding
code and stores it locally.

The code analyzer analyzes the locally stored code and tries
to find different MISs and cluster similar MISs to present
a solution to the query. Therefore it first builds an abstract
syntax tree for the available code samples. Based on the ab-
stract syntax tree a directed acyclic graph is created to han-
dle the control-flow information and method inlining. Tree
nodes represent single statements and the edges the possible
control flow. With some heuristic methods additional type
information is gathered. Then MISs are generated from the
directed acyclic graph, which are using the shortest possible
path from the source class type to the destination type.

Then the sequence postprocessor clusters MISs by using an-
other similar heuristic. Afterwards the sequence postproces-
sor builds a ranking based on the importance. As last step, if
at least one useful solution has been determined, the query
splitter shows this solution. Otherwise the calculated MISs
are splitted into sub-queries, which are processed in a divide-
and-conquer fashion.

Hipikat
It is a common task for developers to explore an unknown
codebase. This is the case if new people enter an existing
team, as well as when a third party library has to be used
in a project. In an onsite development team where there is
knowledge already available to some developers, this task
can be supported by mentoring. But today, there is a lot of
code developed as open source projects, where such a pro-
cess is uncommon. In the navigation section we introduced
research, which attempts to optimize this process by provid-
ing an optimized interface.

Especially in open source projects there is a lot of scattered
documentation available, eg. commit logs in a version con-
trol system (VCS), bug databases, newsgroup posts or email
lists and information on websites in various forms usually
exists. These secondary products of the development effort
are called artifacts. In this section we will introduce Hipikat,
an extension to the Eclipse IDE developed by Čubranić and
Murphy [10], which uses such artifacts to model a group
memory of the project. This can be utilized by developers
to query for pieces of information related to a task at hand.
Hipikat was developed as a research prototype tailored to
the Eclipse project in 2003, i.e. to support the development
of Eclipse itself. Also, the website1 was last updated that
year. As a result, it interfaces with the tools of the Eclipse
developers’ community at that time, which used Concurrent
Versions System (CVS2) as VCS and newsgroup postings,
1http://www.cs.ubc.ca/labs/spl/projects/hipikat
2http://savannah.nongnu.org/projects/cvs

which might not be the state-of-the-art tools in current de-
velopment. But this can be neglected, since the main contri-
bution is the tool’s concept which should be easily adaptable
to a modern VCS or eg. forum posts.

Server architecture
Hipikat is implemented as a client-server architecture, where
the server is responsible for maintaing a database of avail-
able artifacts. This is done by three modules, which are re-
spectively retrieving new artifacts from the mentioned sources,
updating the internally modelled representation from these
artifacts and responding to user queries by determining the
appropriate pieces of information and providing links to them.

The update module uses CVS and the Network News Trans-
fer Protocol (NNTP) to fetch source code commit logs and
news posts, while Bugzilla and project websites are retrieved
using a webcrawler. The identification module has submod-
ules to update the group memory based on the newly cap-
tured artifacts. CVS commits are matched by common pat-
terns (eg. “fix for bug 1234”) to corresponding bugs, recorded
as an implements links. When a commit and a change of a
bug status to “fixed” occur in a small time window, an im-
plements link from the commit to the bug is created as well.
If multiple commits with an identical log comment, author
and within the same time window are detected, the commits
are linked together in a similar fashion. A simple matcher is
applied to news postings, mapping the news threads together
in the group memory. All artifacts in the group memory are
also indexed for text similarity: per-file indexing can be done
as soon as the artifact is captured by the system, global in-
dexing can be performed after all new artifacts have been
retrieved.

The selection module takes queries from the developer and
processes them for text similarity like another artifact as de-
scribed in the identification module. The similarity of ar-
tifacts is then used to create a cluster of similar artifacts,
capped at 15 items. Submodules corresponding to the differ-
ent submodules of the identification process provide further
artifacts related to the query. The results are provided with
reasons why they are recommended as well as a measure for
confidence. If artifacts are relevant via multiple paths in the
group memory, this is accounted for in the corresponding
confidence.

Client design
The client is integrated in the Eclipse IDE, supplementing
the search dialog with a new tab containing a simple text in-
put field to query the group memory. Furthermore an artifact
can be used as query source, by selecting “Query Hipikat”
via the context menu in the outline view, package explorer
or CVS repository view. A query results itself can be used
to perform a new search. The search results are displayed in
a newly introduced view as depicted in figure 8. In addition
to a name summarizing the results content, columns for rea-
son and confidence are available as well as a type. The type
column enables developers to sort the list in order to quickly
assess results from a specific type of source.

6



Figure 8. Hipikat search result view [10]

The results are either opened in an integrated editor (CVS
files, Bugzilla entries) or with an external application (news
posts, website results). Additionally, CVS entries can be
opened using Eclipse’s revision comparing view, in order to
allow the developer to quickly review modifications intro-
duced by a related commit. The list can be reorganized by
the user, although this interaction is not persisted in any way.
Čubranić mentioned this might be used in later versions to
further refine the group memory.

Evaluation
Two case studies were done, the first one on a student as-
signment with 12 pairs of students. 5 pairs did not provide
the researchers with their final reports. Most of the other
participants reported that Hipikat recommended useful arti-
facts, mainly similar bug entries, which provide links to ver-
sion changes in the VCS. This helped the subjects identify
relevant classes as well as how similar changes were imple-
mented. One pair of students reported, that Hipikat provided
a useful artifact pointing to a specific class, but only after
they worked out the change on their own, did they realize it’s
relevance. In their feedback another pair of students men-
tioned that Hipikat provided the initial links to relevant files,
from where they explored the source code in a bottom-up
approach.

In the second study the first author reimplemented an al-
ready fixed bug in the Eclipse bugzilla database. In that
case Hipikat provided useful links to artifacts related to half
the task at hand. For the remaining part, the linked artifacts
were not applicable, as the hook by which the already imple-
mented code is activated, had to be different. The author then
investigated this issue without the help of Hipikat and con-
cluded that the means available in Eclipse were sufficient.
Unfortunately a comparison between the author’s bugfix and
the original solution implemented without Hipikat was not
presented.

SOCIAL ASPECTS IN PROGRAMMER INTERFACES
Syde
When software is developed by a team, further requirements
to an integrated development environment emerge. Current
IDEs therefore integrate version control software, e.g. Sub-
version3 or CVS. But this only serves as a partial solution to
the collaboration problem, as version control system work
on a first-come first-served basis, i.e. whoever commits his
changes first updates the current revision. If conflicts occur,
they have to be resolved by the developer who wants to com-
mit his edited source. Furthermore the current revision has
3http://subversion.apache.org/

to be actively checked out, in order to see conflicts with the
current working revision. In effect this means, the problem
becomes only apparent, after it already occurred.

Syde, a tool for synchronous development, is an extension
to the eclipse IDE developed by Hattori and Lanza [4] which
tackles this problem by improving the developers’ awareness
of each other. It is implemented as a client-server architec-
ture, with a centralized server collecting changes and check-
ing them for conflicts. The client side consists of extensible
plugins which capture code deltas, provide decorations and
additional views. As code is written, the deltas are transfered
to the server and checked in real-time for possible conflicts
with other developer’s changes. This enables merge conflict
detection as early as possible, so programmers can commu-
nicate and adjust early on which approach is to be taken.

As new code is written, Syde models the changes closely to
the underlying structure. This is achieved by modelling the
change deltas based on the abstract syntax tree (AST) rep-
resentation of the source code, which is more fine-grained
and enables conflicts to be detected in a very precise man-
ner. A file-based revision control system does not provide a
model for common changes which might occur, like refac-
toring a function out of a class. If one developer is changing
this function before the refactoring takes place, a second de-
veloper doing the refactoring might not check the state of
the original location of the function (or it might not even be
committed yet), as he’s now working on his refactored ver-
sion. Whichever developer tries to commit after the the other
has done so, would have to merge the conflict. But a regular
revision control software doesn’t even map the changes to
one merging context. With Syde, these conflicts would be
perceived as they occur and maybe an conflict could even be
avoided if one developer can wait for the other’s changes to
be finished first. But even if this is not possible, the respec-
tive fragments can be isolated and reviewed together, easing
the task of merging.

If conflicts between different working copies are detected,
they are annotated in the source code editor (figure 9.A) and
appear in a dedicated conflict view (a detailed list view, fig-
ure 9.B). In the conflict view entries are marked yellow, if
both changes are not commited to the VCS yet and if an
edited version conflicts with the VCS version, it is marked
in red. Additionally, all files which differ from the VCS ver-
sion are marked in the project explorer and outline with an
overlay icon and an arrow (pointing upward if the developer
himself has changed the code and pointing downwards if an-
other developer changed the file; figure 9.C and 9.D). In the
latter case, the developers name and a timestamp of the the
last modification is added.

Furthermore, the history of the AST’s elements can later be
reviewed, even if changes like the mentioned refactoring oc-
curred. This again is superior to a file-based approach, as
the system can extract the relevant changes (eg. to a func-
tion), showing a complete history which might span multi-
ple files if it was moved. Commits unrelated to a function,
but updating it’s class source code file, can be filtered out.

7



Figure 9. Syde — A) Source code annotation B) Conflicts View C) Project Explorer decorations D) Outline decorations E) WordClouds View F)
Bucket View [4]

In contrast, with a regular VCS the developer has to know
or find the relevant files in the history, can only look at the
complete history of that file and depending on the precision
of the comments this might be a tedious or error-prone task.

Syde’s approach could also work with a distributed version
control system (like GIT4), since the basic workflow of com-
mitting revisions is the same. This would yield the same re-
sults, as a distributed VCS does not provide real-time changes.
Syde seems better suited for development than concurrent
editing as available in Google Docs5 or Microsoft Word 20106.
Concurrent editing would often result in temporary versions
which are not compilable, therefore inhibiting the individual

4http://git-scm.com/
5http://docs.google.com/
6http://office.microsoft.com/de-de/word/

programmer in his workflow.

To improve team awareness, Syde introduces two new views
which enable developers to get an overview of the project
history. The WordCloud (figure 9.E) view shows a list of
modified classes, ordered with recently modified classes first
and color-coded to show the last committer. The font size is
increased based on the number of changes to a class. This
provides a quick overview of past development, visualizing
the focus classes received and who has been recently work-
ing on which parts of the software. To provide a more de-
tailed view on who contributed to a class, a bucket view is
available (figure 9.F). It shows one column (bucket) for each
class, which is filled with small squares for each change,
with color indicating which developer was responsible for
the change. The Bucket is filled from bottom to top in chrono-
logical order, thereby enabling the users to quickly deter-

8



Figure 10. Social hierarchy of eclipse v1.0 bug assignees [11]

mine who took part in development of which classes, when
he was involved and how much each respective developer
contributed. The idea of these additional views seem valid,
although it might be better suited to integrate the presented
information on a method level. Code Bubbles could be a way
to do this, since it is more tailored towards showing related
code in one context.

Visualizing Social Hierarchies
In the last section, Syde and its different views of the project
history were introduced. Yet those views are based on classes,
so if a project becomes bigger and the more developers are
involved the harder it gets to still extract critical knowledge
from these views. Usually when a software system grows, it
is split into different modules and different teams maintain
different parts of the code base. Wermelinger et al. pro-
posed using formal concept analysis to extract social hierar-
chies from the project history [11]. Based on this modelling,
it is possible to identify lead developers with the best sys-
tem overview, people having worked on certain parts of the
system (eg. java packages), overview these developments
over time and determine which parts run the risk to become
legacy code.

Formal concept analysis is based on lattice theory, which we
will introduce by example: Pairs of source code artifacts and
developers who worked on them form the primary concepts
〈o, a〉. o ⊆ O, the set of all source code artifacts. a ⊆ A,
the set of all developers. The lattice defines an ordering,
〈o, a〉 ≤ 〈o′, a′〉 if o ⊆ o′. This ordering implies a hierarchy,
since a larger set of source code artifacts implies, that devel-
opers who worked on all parts, also worked on each subset
of the code artifacts: a′ ⊆ a.

To work with this structure, the smallest concepts should
be defined in an architectural context, since a finer grained

model would not work with the lattice. Assuming a devel-
oper worked on a module, it is unlikely that he committed
source code to each class. Yet if the model is applied on
that level, the lattice hierarchy would require just that if he
is to be included in a concept of the whole module. Wer-
melinger and colleagues extracted this data from the Eclipse
Bugzilla database and mapped the Eclipse components to
the bug assignees. Furthermore they filtered out developers
who were not involved in a enough bugs, to reduce the noise
in the data. Based on this data a visualization was created
using Concept Explorer (ConExp7), which allows browsing
a concept lattice structure interactively. Instead of utilizing
a bug database as data source, using VCS information or e-
mail provides similar information. In the case at hand, the
approach was to use the bug database instead, in order to
capture people who might not have commit rights but con-
tributed via Bugzilla.

An example visualization for Eclipse release 1.0 is depicted
in figure 10. The relative flatness of the hierarchy can be
attributed to the fact that the eclipse project is well struc-
tured, since bugs can be resolved by teams specialized on
the respective components. A few people resolve bugs in dif-
ferent components, this kind of information becomes valu-
able, if these people are leaving the project. The structure
shows other developers who already have a subset of expe-
rience with parts of the project, as they could discuss who
takes such an architecture integrating role. Tools like Syde
could be complementary used to determine parts of the soft-
ware with which the replacement developer(s) should ac-
quaint themselves.

If the changes of the structure are examined, those parts
of the system which became legacy code (because nobody

7http://conexp.sf.net/

9



maintains them anymore) can be identified and critical de-
cisions for further development can be improved. Today,
the prerequisite data is already available, so these decision
can be made at reasonable times in the development cycle
and not when problems occur. Furthermore, when projects
are big, key people to drive decisions can be extracted from
the model. For example if a new component has to be de-
veloped, which interacts with two other components: Peo-
ple knowing the existing components, as well as developers
having a good overall system understanding, can be identi-
fied enabling an efficient communication between the most
qualified developers.

SUMMARY AND OUTLOOK
The main contribution an interface for programmers should
accomplish, is to ease the programmer’s work in his day to
day workflow processes. We decided to leave domain spe-
cific approaches out of the scope of our work, in order to
concentrate on solutions to more general problems. Some
approaches could straight-forward complement each other:
Code Bubbles could use the concepts implemented in Hipikat,
since it provides a good semantic workflow, yet all external
artifacts seem to be only accessible by context menus and
lists. Syde could also provide some functionality to Code
Bubbles, since both annotations and the additional views
could be added.

Navigating the source code is an important part and in ad-
dition to Code Thumbnails and Code Bubbles, which are
strong contributions in this concern, Relo, Syde as well as
the paper on social hierarchy visualization add valuable ap-
proaches. Code Thumbnails is a valid idea, since the state-
of-the-art navigation available today obviously is not opti-
mal. But although using spatial maps to navigate might be
successfully applied in some cases, the approach is based
on hiding information from the developer. Forming a map
in perceptual way could as well utilize a meaningful repre-
sentation. Relo is a nice example of an approach to gener-
ate such a structure. Code Bubbles implements an overview
which exemplifies utilizing clusters of task related code frag-
ments, yet could vastly profit from a more generalized de-
piction when zooming out to further improve navigation ef-
ficiency.

For learning purposes, we found Relo, Parseweb and Hipikat
to serve as good examples of how to improve this process.
Yet Syde and Code Bubbles would nicely complement in
this regard: Syde’s approach to capture smaller code changes
with time-stamps would be an interesting addition, since it
could be used as additional crowd-sourced input to refine the
algorithmic approaches of the former tools. Code Bubbles,
as an in-depth, efficient way to visualize the semantic struc-
ture of object oriented code in general, would surely ease
these learning tasks as well.

In our opinion, the papers on social aspects are important,
because as long as machine learning does not reach the point,
that it can understand what a specific code is supposed to
accomplish, crowd sourcing provides a possibility to aug-
ment relatively simple algorithms with intricate knowledge.

Code Bubbles shows how valuable it is to utilize semantic
knowledge about the code structure. Yet to go a step further
and generalize the structure to provide eg. an architectural
overview, computer science has as of today no means avail-
able to accomplish this automatically.

It remains to see if an approach like Code Bubbles can take
off in a day-to-day development process. With spatially dis-
tributed teams ever more common, especially in open source
projects, time will show if (distributed) version control and
the established communication is sufficient or if advanced
concepts as summarized by our paper become the new state-
of-the-art.

REFERENCES
1. A. Bragdon, S.P. Reiss, R. Zeleznik et al. Code bubbles:

a working set-based interface for code understanding
and maintenance. CHI ’10, pages 2503–2512, 2010.

2. A. Bragdon, S.P. Reiss, R. Zeleznik et al. Code
bubbles: rethinking the user interface paradigm of
integrated development environments. ICSE ’10, pages
455–464, 2010.

3. R. DeLine, M. Czerwinski, B. Meyers, et al. Code
Thumbnails: Using Spatial Memory to Navigate
Source Code. VLHCC, pages 11–18, 2006.

4. L. Hattori and M. Lanza. Syde: a tool for collaborative
software development. ICSE ’10, pages 235–238, 2010.

5. A.J. Ko, H.H. Aung, and B.A. Myers. Eliciting Design
Requirements for Maintenance-Oriented IDEs: A
Detailed Study of Corrective and Perfective
Maintenance Tasks. In ICSE ’05, pages 126–135, 2005.

6. A.v. Mayrhauser and M.A. Vans. Program
Comprehension During Software Maintenance and
Evolution. Computer, 28(8):44–55, 1995.

7. V. Sinha, , D. Karger, and R. Miller. Relo: helping
users manage context during interactive exploratory
visualization of large codebases. eclipse ’05, pages
21–25, 2005.

8. J. Smith. A Comparison of the IBM Rational Unified
Process and eXtreme Programming. IBM/Rational,
2004.

9. S. Thummalapenta and T. Xie. Parseweb: a
programmer assistant for reusing open source code on
the web. ASE ’07, pages 204–213, 2007.

10. D. Čubranić and G.C. Murphy. Hipikat: recommending
pertinent software development artifacts. ICSE ’03,
pages 408–418, 2003.

11. M. Wermelinger, Y. Yu, and M. Strohmaier. Using
formal concept analysis to construct and visualise
hierarchies of socio-technical relations. ICSE ’09,
pages 327 –330, 2009.

10


	Introduction
	Navigation
	Code Thumbnails
	Code Thumbnails Scrollbar
	Code Thumbnails Desktop
	Evaluation

	Code Bubbles
	The bubble-metaphor
	Multiple bubbles
	Virtual screen space
	Working with the IDE
	Debugging with bubbles
	Evaluation


	Learning
	Relo
	ParseWeb
	Hipikat
	Server architecture
	Client design
	Evaluation


	Social aspects in programmer interfaces
	Syde
	Visualizing Social Hierarchies

	Summary and outlook
	REFERENCES 

